3.1239 \(\int \frac {1}{(b d+2 c d x)^2 \sqrt {a+b x+c x^2}} \, dx\)

Optimal. Leaf size=37 \[ \frac {2 \sqrt {a+b x+c x^2}}{d^2 \left (b^2-4 a c\right ) (b+2 c x)} \]

[Out]

2*(c*x^2+b*x+a)^(1/2)/(-4*a*c+b^2)/d^2/(2*c*x+b)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {682} \[ \frac {2 \sqrt {a+b x+c x^2}}{d^2 \left (b^2-4 a c\right ) (b+2 c x)} \]

Antiderivative was successfully verified.

[In]

Int[1/((b*d + 2*c*d*x)^2*Sqrt[a + b*x + c*x^2]),x]

[Out]

(2*Sqrt[a + b*x + c*x^2])/((b^2 - 4*a*c)*d^2*(b + 2*c*x))

Rule 682

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(2*c*(d + e*x)^(m +
1)*(a + b*x + c*x^2)^(p + 1))/(e*(p + 1)*(b^2 - 4*a*c)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*
a*c, 0] && EqQ[2*c*d - b*e, 0] && EqQ[m + 2*p + 3, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {1}{(b d+2 c d x)^2 \sqrt {a+b x+c x^2}} \, dx &=\frac {2 \sqrt {a+b x+c x^2}}{\left (b^2-4 a c\right ) d^2 (b+2 c x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 36, normalized size = 0.97 \[ \frac {2 \sqrt {a+x (b+c x)}}{d^2 \left (b^2-4 a c\right ) (b+2 c x)} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((b*d + 2*c*d*x)^2*Sqrt[a + b*x + c*x^2]),x]

[Out]

(2*Sqrt[a + x*(b + c*x)])/((b^2 - 4*a*c)*d^2*(b + 2*c*x))

________________________________________________________________________________________

fricas [A]  time = 1.20, size = 48, normalized size = 1.30 \[ \frac {2 \, \sqrt {c x^{2} + b x + a}}{2 \, {\left (b^{2} c - 4 \, a c^{2}\right )} d^{2} x + {\left (b^{3} - 4 \, a b c\right )} d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^2/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(c*x^2 + b*x + a)/(2*(b^2*c - 4*a*c^2)*d^2*x + (b^3 - 4*a*b*c)*d^2)

________________________________________________________________________________________

giac [B]  time = 0.25, size = 139, normalized size = 3.76 \[ -\frac {\sqrt {c} \mathrm {sgn}\left (\frac {1}{2 \, c d x + b d}\right ) \mathrm {sgn}\relax (c) \mathrm {sgn}\relax (d)}{b^{2} c d^{2} - 4 \, a c^{2} d^{2}} + \frac {\sqrt {-\frac {b^{2} c d^{2}}{{\left (2 \, c d x + b d\right )}^{2}} + \frac {4 \, a c^{2} d^{2}}{{\left (2 \, c d x + b d\right )}^{2}} + c}}{b^{2} c d^{2} \mathrm {sgn}\left (\frac {1}{2 \, c d x + b d}\right ) \mathrm {sgn}\relax (c) \mathrm {sgn}\relax (d) - 4 \, a c^{2} d^{2} \mathrm {sgn}\left (\frac {1}{2 \, c d x + b d}\right ) \mathrm {sgn}\relax (c) \mathrm {sgn}\relax (d)} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^2/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

-sqrt(c)*sgn(1/(2*c*d*x + b*d))*sgn(c)*sgn(d)/(b^2*c*d^2 - 4*a*c^2*d^2) + sqrt(-b^2*c*d^2/(2*c*d*x + b*d)^2 +
4*a*c^2*d^2/(2*c*d*x + b*d)^2 + c)/(b^2*c*d^2*sgn(1/(2*c*d*x + b*d))*sgn(c)*sgn(d) - 4*a*c^2*d^2*sgn(1/(2*c*d*
x + b*d))*sgn(c)*sgn(d))

________________________________________________________________________________________

maple [A]  time = 0.06, size = 38, normalized size = 1.03 \[ -\frac {2 \sqrt {c \,x^{2}+b x +a}}{\left (2 c x +b \right ) \left (4 a c -b^{2}\right ) d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*c*d*x+b*d)^2/(c*x^2+b*x+a)^(1/2),x)

[Out]

-2*(c*x^2+b*x+a)^(1/2)/(2*c*x+b)/d^2/(4*a*c-b^2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^2/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 positive, negative or zero?

________________________________________________________________________________________

mupad [B]  time = 0.52, size = 37, normalized size = 1.00 \[ -\frac {2\,\sqrt {c\,x^2+b\,x+a}}{d^2\,\left (4\,a\,c-b^2\right )\,\left (b+2\,c\,x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b*d + 2*c*d*x)^2*(a + b*x + c*x^2)^(1/2)),x)

[Out]

-(2*(a + b*x + c*x^2)^(1/2))/(d^2*(4*a*c - b^2)*(b + 2*c*x))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {1}{b^{2} \sqrt {a + b x + c x^{2}} + 4 b c x \sqrt {a + b x + c x^{2}} + 4 c^{2} x^{2} \sqrt {a + b x + c x^{2}}}\, dx}{d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)**2/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/(b**2*sqrt(a + b*x + c*x**2) + 4*b*c*x*sqrt(a + b*x + c*x**2) + 4*c**2*x**2*sqrt(a + b*x + c*x**2))
, x)/d**2

________________________________________________________________________________________